

 Page 1 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
What is an Algorithm?

An algorithm is a sequence of steps, which perform a specific task. In computing, algorithms are usually
represented as a program flowchart, or in pseudo-code.

Program flowchart

A program flowchart is a pictorial representation of an algorithm. Program flowcharts use special
symbols:

 Page 2 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
UExample:

Flowchart to output the first five square numbers:

 Page 3 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
Pseudo-code

Pseudo-code is a simplified form of programming code that uses common programming keywords, but
does not use the strict syntax rules of a programming language.

UAn example of a pseudo-code algorithm:

BEGIN
INPUT CardNumber
REPEAT

INPUT PIN
IF PIN is wrong for this CardNumber THEN

OUTPUT “Wrong Pin”
END IF

UNTIL Pin is correct
INPUT Amount
IF there are enough funds THEN

Dispense Cash
Update customer’s balance

ELSE
OUTPUT “Sorry, insufficient funds”

END IF
END

 Page 4 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
Meaningful identifier names

Identifiers are used to give names to constants and variables. They are also used to name procedures,
functions and the main program.

Naming conventions

Most of the identifier names must conform to the following rules (different programming languages may
have slightly different rules):

1. they must be unique;
2. spaces must not be used;
3. they must begin with a letter of the alphabet;
4. the rest of the identifier must NOT contain punctuation – it may only consist of a mixture of letters and digits

(A–Z, a–z and 0–9) and the underscore character ‘_’;
5. they must not be a ‘reserved’ word – e.g. Print, Repeat, For, Dim, Loop, etc.

Recommended naming policies

Do not use spaces within identifier names – even with programming languages where they are permitted.
Instead, use the underscore character ‘_’ or, better yet, type names in lowercase except the first letter of
each word, which should be typed in uppercase.

UExamples of good identifier names:

FirstName LastName PostCode

TelephoneNumber WeightAtBirth TestScore

AverageHeight

Further clarity can be given to identifier names by including a prefix that identifies the data type.

The above identifiers would be clearer if given the following prefix data types:

strFirstName strLastName strPostCode

strTelephoneNumber sglWeightAtBirth intTestScore

sglAverageHeight

 Page 5 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
Algorithm Basic Constructs

Assignment

An assignment is an instruction in a program that places a value into a specified variable.

Some typical assignments are:

 TheLength = 20.5
 TheUsersName$ = “Charlie”
 TheArea = TheWidth * TheLength
 TotalCost = LabelledCost + 15
 Counter = Counter + 1

Note that the last example is a common method used to increment the value of a variable. It could be read
as:

 “The new value of Counter is its existing value plus one”

Type Mismatch errors

A type Mismatch error occurs in a program when a variable has been declared as one data type, but it is
later assigned a value that is of an incompatible data type.

The following code will produce a ‘Type Mismatch’ error because “Charlie” is not an integer:

DIM MyCounter AS Integer
MyCounter = “Charlie”

Other Type Mismatches will be produced by the following:

DIM RentalDateAs Date
MemberRentalDate = “September”

DIM ShoeSizeAs Integer
JohnsShoeSize = 10.3

UNote that a variable that is declared as a string will never produce a type mismatch error.

 Page 6 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
Sequence

Sequence is when the programming statements are executed one after the other, in the order in which
they appear in the program.

Selection

Selection is a control structure in which there is a test to decide if certain instructions are executed.

IF-THEN-ELSE

This selection method is used if there are two possible outcomes to a test:

IF x < 0 THEN
OUTPUT “Sorry, you can’t have negative values”

ELSE
a = x*x
OUTPUT a

END

SELECT-CASE

This selection method is used if there are more than two possible outcomes to a test:

SELECT CASE KeyPress
CASE LeftArrow

Move one character backwards
CASE RightArrow

Move one character forwards
CASE UpArrow

Move one character up
CASE DownArrow

Move one character down
END SELECT

 Page 7 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
Nested selection

This is where there is an IF statement within an IF statement.

The following algorithm allows a maximum of four attempts to login to a computer system:

INPUT Password
IF NumberOfTries< 5 THEN

IF Password is correct THEN
OUTPUT “Successful Login”

ELSE
OUTPUT “Password was incorrect”

ENDIF
ELSE

OUTPUT “You have made too many attempts”
ENDIF

Nested iteration

This is where there is a loop within a loop.

A nested iteration is needed to initialize a two-dimensional array:

FOR row = 0 TO 7
FOR column = 0 TO 5

SET MyArray (row, column) = 0
NEXT column

NEXT row

Iteration

Iteration is a control structure in which a group of statements is executed repeatedly – either a set
number of times, or until a specific condition is True.

FOR-NEXT

This is an unconditional loop in which the number of repetitions is set at the beginning.

FOR X = 1 TO 5
Answer = X*3
OUTPUT X, Answer

NEXT

 Page 8 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
WHILE-ENDWHILE

This is a conditional loop, which has a test at the start and repeats until the condition is false:

X = 0
WHILE X < 6 DO

X = X + 1
Answer = X*3
OUTPUT X, Answer

ENDWHILE

REPEAT-UNTIL

This is a conditional loop, which has a test at the end and repeats until the condition is true:

X = 0
REPEAT
X = X + 1
Answer = X*3
OUTPUT X, Answer

UNTIL X > 4

 Page 9 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
Comparison of the different iterations:

UTop down/modular design

Top-down design is when a problem is split into smaller sub-problems, which themselves are split into
even smaller sub-problems until each is just one element of the final program.

Benefits and drawbacks of modular programs:

 Page 10 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms

UStructure diagrams

A structure diagram is a pictorial representation of a modular system.

UStepwise refinement

Stepwise refinement is the process of developing a modular design by splitting a problem into smaller
sub-tasks, which themselves are repeatedly split into even smaller sub-tasks Uuntil each is just one
element of the final program.

 Page 11 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
Subroutine

A subroutine is a self-contained section of program code that performs a specific task, as part of the main
program.

Procedure

A procedure is a subroutine that performs a specific task without returning a value to the part of the
program from which it was called.

Function

A function is a subroutine that performs a specific task and returns a value to the part of the program
from which it was called.

Note that a function is ‘called’ by writing it on the right hand side of an assignment statement.

Parameter

A parameter is a value that is ‘received’ in a subroutine (procedure or function).

The subroutine uses the value of the parameter within its execution. The action of the subroutine will be
different depending upon the parameters that it is passed.

Parameters are placed in parenthesis after the subroutine name. For example:

Square(5) ‘passes the parameter 5 – returns 25

Square(8) ‘passes the parameter 8 – returns 64

Square(x) ‘passes the value of the variable x

 Page 12 of 12

Computer Science 9608 (Notes)
Chapter: 2.1 Algorithm design and problem-
solving

Topic: 2.1.1 Algorithms
Subroutine/sub-program

A subroutine is a self-contained section of program code which performs a specific task and is referenced
by a name.

A subroutine resembles a standard program in that it will contain its own local variables, data types, labels
and constant declarations.

There are two types of subroutine. These are procedures and functions.

 Procedures are subroutines that input, output or manipulate data in some way.

 Functions are subroutines that return a value to the main program.

A subroutine is executed whenever its name is encountered in the executable part of the main program.
The execution of a subroutine by referencing its name in the main program is termed ‘calling’ the
subroutine.

The benefits of using procedures and functions are that:

 The same lines of code are re-used whenever they are needed – they do not have to be repeated in different
sections of the program.

 A procedure or function can be tested/improved/rewritten independently of other procedures or functions.

 It is easy to share procedures and functions with other programs – they can be incorporated into library files
which are then ‘linked’ to the main program.

 A programmer can create their own routines that can be called in the same way as any built-in command.

