

 Page 1 of 6

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.4 Assembly language
Machine code - simple instructions that are executed directly by the CPU

As we already know from chapter 1.1.1, computers can only understand binary, 1s and 0s. We are now
going to look at the simplest instructions that we can give a computer. This is called machine code.

Machine code allows computers to perform the most basic, but essential tasks. For this section we are
going to use the Accumulator (you met this register earlier) to store the intermediate results of all our
calculations. Amongst others, the following instructions are important for all processors:

 LDD - Loads the contents of the memory address or integer into the accumulator

 ADD - Adds the contents of the memory address or integer to the accumulator

 STO - Stores the contents of the accumulator into the addressed location

Assembly code is easy to read interpretation of machine code, there is a one to one matching; one line of
assembly equals one line of machine code:

Machine code Assembly code

000000110101 = Store 53

Machine code and instruction sets

There is no set binary bit pattern for different opcodes in an instruction set. Different processors will use
different patterns, but sometimes it might be the case that you are given certain bit patterns that
represent different opcodes. You will then be asked to write machine code instructions using them.

Relationship between Assembly language and Low Level Language:

LOAD 253 Assembly Code
0000 11111101 Machine Code

For every assembly language command there is an equal machine language command. i.e. the
relationship is 1:1.

 Page 2 of 6

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.4 Assembly language
Below is an example of bit patterns that might represent certain instructions.

Machine code Instruction Addressing mode Hexadecimal Example

0000 STORE Address 0 STO 12

0001 LOAD Number 1 LDM #12

0010 LOAD Address 2 LDD 12

0100 ADD Number 4 ADD #12

1000 ADD Address 8 ADD 12

1111 HALT None F END

An assembler converts an assembly language program into machine language program. Machine

code is binary. So an Assembler converts a program that looks like the program I wrote below into

something like "10100110010101110101".

Single pass and two pass assembler:

One-pass assemblers go through the source code once and assume that all symbols will be defined

before any instruction that references them. It has to create object code in single pass and it cannot

refer any table further.

Two-pass assemblers does two passes as it creates a table with all symbols and their values in the

first pass, then use the table in a second pass to generate code and the length of each instruction on

the first pass must be determined so that the addresses of symbols can be calculated. It can be

 Page 3 of 6

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.4 Assembly language
referring further and it does its actual translation in second pass and convert instruction into machine

code. Let's look at this assembly instruction:

Op-Code operand

 ADD A 20

Here Add is the operation and A and 20 are the operands. A programmer writes a bunch of these single

line statements that make up the assembly language program. Each line in this program is converted

into Binary format and loaded into consecutive memory locations when this program is called for

execution. These instructions in consecutive memory locations are executed one after the other

unless something called a Jump instruction is encountered. A jump instruction asks the system to go

to a particular memory location (Marked by a Label in the source code) and start executing code from

there.

The problem with this is that the current instruction under execution may ask you to jump to a

particular memory location marked by label which the assembler has not yet encountered. See in the

example below the first instruction is to jump to X, but X is not defined till line 5. To translate an

assembly statement to machine code you need the exact value of the operand in that statement. If the

operand is referring to a value in a register, you need the register number. If operand is referring to a

value in a memory location, you need the address of that memory location. If the operand is a

hardcoded value, you need that value. If you operand is referring to a particular line number in your

source code that is marked by a label to jump to, you need that line number. Without this information

you can't translate an assembly statement to machine code.

 Page 4 of 6

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.4 Assembly language
1 JMP x
2 y:
3 ADD A 30
4 JMP z
5 x:
6 MUV A 20
7 JMP y
8 z:

To solve this problem there are two approaches, hence leading to two types of assemblers.

(1) Two Pass Assembler: In older days when memory was a limitation people used to use a two pass

assembler. A two pass assembler has a symbol table which is a table with two columns, symbol name,

and symbol value. When it see the first sentence JMP x. It doesn't know what a x is, so it creates a new

entry in the symbol table for x with value field un-initialized. When it gets to instruction 5. It sets the x

value as 5.

So after reading the whole code(After first pass). The table will look something like this.

Symbol Name | Symbol Value

 X 5

 Y 2

 Z 8

In the next pass it just runs through each sentence and converts the program sentence by sentence

into machine code using the symbol table.

(2) Single Pass Assembler: In the Single Pass Assembler, we use a different kind of symbol table.

Unlike the Two Pass Assembler where we stored the name of a symbol and its value, in one Pass

Assembler we use a table where we have a symbol and all the locations where we have encountered

that symbol. As soon as we encounter the initialization for a symbol we use the symbol table to jump

to all the locations where the symbol was encountered, plug in the value we just read, convert those

lines into machine code, and continue back from the line where we encountered the initialization.

As you can clearly see, the Single Pass Assembler needs a lot of memory at runtime. Much more than

Two Pass. In olden days people could barely fit the assembly program in memory so people used to

use the Two Pass Assembler.

UThanks to Sastry Aditya for this passage.

 Page 5 of 6

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.4 Assembly language
Symbolic addressing:
So far, we have discussed mnemonics, opcodes and operands. But another key aspect of
programming is to fetch or store data and instructions from memory.
The simplest way to do this is to refer directly to a memory location such as #3001. But this brings a
number of problems

 it is difficult to see the meaning of the data in location #3001
 the data may not be able to be located at #3001 because another program is already using that
location.

To overcome this issue, the idea of 'symbolic addressing' is used. Instead of referring to an absolute
location, the assembly language allows you to define a 'symbol' for the data item or location. Like this:

VarA DB define a variable called VarA as a byte
VarB DW define a variable called VarB as a word
MOV AL,[VarA] Move data in VarA into register AL

The symbols being defined by this bit of code are VarA, VarB. The size of the variables VarA and VarB
are defined, but notice that their location is not defined.

It is the job of the assembler to resolve the variables into locations in memory.
The advantages of using symbolic addressing over direct memory references are:

 The program is re-locatable in memory. It does not particularly care about its absolute
location, it will still work

 Using symbols makes the software much more understandable
When the code is ready to be loaded and run, a 'symbol table' is created by the assembler for the linker
and loader to use to place the software into memory.

Absolute addressing in assembly:
When a memory address is used in assembly language command it is absolute addressing. The
numeric number that is used to represent the memory location is supposed to be numeric label. Like
LDD 253, ADD 56 etc.

Assembler Directives:
Assembler directives are instructions to the assembler to perform various bookkeeping tasks, storage
reservation, and other control functions. To distinguish them from other instructions, directive names
begin with a period. Three common directives: .data, .text, and .word. The first two (.data and .text) are
used to separate variable declarations and assembly language instructions. The .word directive is
used to allocate and initialize space for a variable.

 Page 6 of 6

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.4 Assembly language
Assembly Language Macros:
A macro is an extension to the basic ASSEMBLER language. They provide a means for generating a
commonly used sequence of assembler instructions/statements. The sequence of
instructions/statements will be coded ONE time within the macro definition. Whenever the sequence is
needed within a program, the macro will be "called".

 Most assemblers include support for macros. The term macro refers to a word that stands for
an entire group of instructions.

 Using macros in an assembly program involves two steps:
1: Defining a macro:
The definition of a macro consists of three parts: the header, body, and terminator:
<label> MACRO The header
. . . . The body: instructions to be executed
ENDM The terminator

2: Invoking a macro by using its given <label> on a separate line followed by the list of
parameters used if any:
<label> [parameter list]

	Machine code and instruction sets

