

 Page 1 of 8

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.3 The processor’s instruction set
Instruction set - the range of instructions that a CPU can execute

There are many different instructions that we can use in machine code, you have already met three (LDD,
ADD, STO), but some processors will be capable of understanding many more. The selection of
instructions that a machine can understand is called the instruction set. Below is a list of some other
instructions that might be used:

 Page 2 of 8

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.3 The processor’s instruction set
You'll notice that in general, instructions have two main parts:

 opcode - instruction name

 operand - data or address

Depending on the word size, there will be different numbers of bits available for the opcode and for the
operand. There are two different philosophies at play, with some processors choosing to have lots of
different instructions and a smaller operand (Intel, AMD) and others choosing to have less instructions
and more space for the operand (ARM). Know it now and we will study it in detail in paper 3.

 CISC - Complex Instruction Set Computer - more instructions allowing for complex tasks to be
executed, but range and precision of the operand is reduced. Some instruction may be of variable
length, for example taking extra words (or bytes) to address full memory addresses, load full data
values or just expand the available instructions.

 RISC - Reduced Instruction Set Computer - less instructions allowing for larger and higher
precision operands.

http://en.wikipedia.org/wiki/Complex_instruction_set_computing
http://en.wikipedia.org/wiki/RISC
http://commons.wikimedia.org/wiki/File:Machine_instructions.svg

 Page 3 of 8

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.3 The processor’s instruction set
Memory Addressing Modes, an Introduction

There are many ways to locate data and instructions in memory and these methods are called 'memory
address modes'

Memory address modes determine the method used within the program to access data either from within
the CPU or external RAM. Some memory addressing modes can control program flow.

The five memory address modes are:

 Direct
 Indirect
 Immediate
 Indexed
 Relative

Immediate Addressing

15TImmediate addressing means that the data to be used is hard-coded into the instruction itself.

This is the fastest method of addressing as it does not involve main memory at all.

For example, you want to add 2 to the content of the accumulator

The instruction is:
LDM #2

Nothing has been fetched from memory; the instruction simply loads 2 to the accumulator
immediately.

Immediate Addressing is very useful to carry out instructions involving constants (as opposed to
variables). For example you might want to use 'PI' as a constant 3.14 within your code.

 Page 4 of 8

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.3 The processor’s instruction set
Direct Addressing

This is a very simple way of addressing memory - direct addressing means the code refers
directly to a location in memory

For example
LDD 3001

In this instance the value held at the direct location 3001 in RAM is loaded to the accumulator.

The good thing about direct addressing is that it is fast (but not as fast as immediate addressing)
the bad thing about direct addressing is that the code depends on the correct data always being
present at same location.

It is generally a good idea to avoid referring to direct memory addresses in order to have 39T're-
locatable code'39T i.e. code that does not depend on specific locations in memory.

You could use direct addressing on computers that are only running a single program. For
example an engine management computer only ever runs the code the car engineers
programmed into it, and so direct memory addressing is excellent for fast memory access.

Indirect Addressing

15TIndirect addressing means that the address of the data is held in an intermediate location so that
the address is first 'looked up' and then used to locate the data itself.

Many programs make use of software libraries that get loaded into memory at run time by the
loader. The loader will most likely place the library in a different memory location each time.

So how does a programmer access the subroutines within the library if he does not know the
starting address of each routine?

Answer: Indirect Addressing

 Page 5 of 8

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.3 The processor’s instruction set

It works like this

1. A specific block of memory will be used by the loader to store the starting address of every
subroutine within the library. This block of memory is called a '39Tvector table 39T'. A vector table holds
addresses rather than data. The application is informed by the loader of the location of the vector
table itself.

2. In order for the CPU to get to the data, the code first of all fetches the content at RAM location
5002 which is part of the vector table.

3. The data it contains is then used as the address of the data to be fetched, in this case the data
is at location 9000

A typical assembly language instruction would look like
LDI 5002

This looks to location 5002 for an address. That address is then used to fetch data and load it
into the accumulator. In this instance it is 302.

 Page 6 of 8

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.3 The processor’s instruction set

Indexed Addressing

15TIndexed addressing means that the final address for the data is determined by adding an offset
to a base address.

Very often, a chunk of data is stored as a complete block in memory.

For example, it makes sense to store arrays as contiguous blocks in memory (contiguous means
being next to something without a gap). The array has a 39T'base address'39T which is the location of
the first element, then an '39Tindex39T' is used that adds an offset to the base address in order to fetch
any other element within the array.

Index addressing is fast and is excellent for manipulating data structures such as arrays as all
you need to do is set up a base address then use the index in your code to access individual
elements.

Another advantage of indexed addressing is that if the array is re-located in memory at any point
then only the base address needs to be changed. The code making use of the index can remain
exactly the same.

 Page 7 of 8

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.3 The processor’s instruction set
Relative Addressing

Quite often a program only needs to jump a little bit in order to jump to the next instruction.
Maybe just a few memory locations away from the current instruction.

A very efficient way of doing this is to just add a small offest to the current address in the
program counter. (Remember that the program counter always points to the next instruction to
be executed). This is called '39Trelative addressing 39T'
39TDEFINITION39T:

Relative addressing means that the next instruction to be carried out is an offset
number of locations away, relative to the address of the current instruction.

Consider this bit of pseudo-code:
jump +3 if accumulator == 2
code executed if accumulator is NOT = 2
jmp +5 (unconditional relative jump to avoid the next line of code)

acc:
 code executed if accumulator is = 2)

carryon:

In the code snippet above, the first line of code is checking to see if the accumulator has the
value of 2 in it. If it is has, then the next instruction is 3 lines away. This is called a 39Tconditional
jump 39T and it is making use of relative addressing.

Another example of relative addressing can be seen in the jmp +5 instruction. This is telling the
CPU to effectively avoid the next instruction and go straight to the 'carryon' point; let’s say
present at this address +5.

 Page 8 of 8

Computer Science 9608 (Notes)
Chapter: 1.4 Processor fundamentals

Topic: 1.4.3 The processor’s instruction set
Summary of memory modes

Memory modes
Type Comment

Immediate Apply a constant to the accumulator. No need to access main memory
Direct or
Absolute
addressing

This is a very simple way of addressing memory - the code refers directly to
a location in memory. Disadvantage is that it makes relocatable code more
difficult.

Indirect
Addressing

Looks to another location in memory for an address and then fetches the
data that is located at that address. Very handy of accessing in-memory
libraries whose starting address is not known before being loaded into
memory

Indexed
Addressing

Takes a base address and applies an offset to it and fetches the data at that
address. Excellent for handling data arrays

Relative
Addressing

Tells the CPU to jump to an instruction that is a relative number of locations
away from the current one. Very efficient way of handling program jumps
and branching.

	Memory Addressing Modes, an Introduction
	Immediate Addressing
	Direct Addressing
	Indirect Addressing
	Indexed Addressing
	Relative Addressing
	Summary of memory modes

